The Effect of Particle Elongation on the Strength of Granular Materials

نویسنده

  • J. Harkness
چکیده

It has long been recognised that the macroscopic mechanical behaviour of a granular material depends on particle shape. However, a systematic investigation into particle shape is lacking. Particle shape is commonly split into the independent categories of form, angularity and roughness. The form of a particle can be quantified using the Longest (L), Intermediate (I) and Shortest (S) dimension of an equivalent scalene ellipsoid; two independent parameters of particle form are defined, termed platyness and elongation. We use DEM simulations with the Potential Particle Method to investigate the effect of particle form on the friction angle of a granular material at critical state. It is found that deviation of particle form from that of a sphere leads to higher angles of friction at critical state. It is argued that, to some extent, the higher critical state strength exhibited by non-spherical particles is due to form suppressing particle rotation and leading to increased interparticle sliding, a mechanism that in comparison requires more energy to be expended.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Aggregate Gradation on Resilient Modulus and CBR in Unbound Granular Materials

Resilient modulus and California Bearing Ratio (CBR) in unbound granular materials are the key technical characteristics of layers in a flexible pavement design. Among the factors affecting these two parameters, the aggregate gradation is the most important. Using particle size distribution curve developed by AASHTO, together with other considerations mentioned in the related regulations have y...

متن کامل

بررسی عوامل موثر بر خواص مکانیکی پلی‌یورتان‌ها(علمی-ترویجی)

The aim of this research is investigation of mechanical properties regarding the polyurethanes as the binder of plastic bonded explosives. Due to the great effect of mechanical properties on application of these materials, the influence of Isocyanate/Hydroxyl ratio, crosslink density, the type of curing agent, hard segment and temperature on mechanical properties of these materials were investi...

متن کامل

The Effect of Intercritical Annealing Time on the Microstructures and Mechanical Properties of an Ultrafine Grained Dual Phase Steel Containing Niobium

An ultrafine grained dual phase (UFG DP) steel containing niobium was produced by a new route utilizing simple cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structures. The effects of intercritical holding time on the microstructural evolutions and mechanical properties were studied. The results showed that increasing intercritical holding time enhnac...

متن کامل

Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test

The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shea...

متن کامل

Experimental and FDM study on the effect of geogrid tensile strength on pullout resistance

This paper presents the effect of geogrid tensile strength by calculating pullout resistance and geogrid-soil interaction mechanism. In order to investigate this interface, a series of pullout tests have been conducted by large scale reformed direct shear test apparatus in both cohesive and granular soils. In numerical, finite difference software FLAC3D has been carried out on experimental test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016